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Optical transparency is rare in terrestrial organisms, and often originates
through loss of pigmentation and reduction in scattering. The coloured
wings of some butterflies and moths have repeatedly evolved transparency,
offering examples of how they function optically and biologically. Because
pigments are primarily localized in the scales that cover a colourless wing
membrane, transparency has often evolved through the complete loss of
scales or radical modification of their shape. Whereas bristle-like scales have
been well documented in glasswing butterflies, other scale modifications
resulting in transparency remain understudied. The butterfly Phanus vitreus
achieves transparency while retaining its scales and exhibiting blue/cyan
transparent zones. Here, we investigate the mechanism of wing transparency
in P. vitreus by light microscopy, focused ion beam milling, microspectropho-
tometry and optical modelling. We show that transparency is achieved via
loss of pigments and vertical orientation in normal paddle-like scales. These
alterations are combined with an anti-reflective nipple array on portions of
the wing membrane being more exposed to light. The blueish coloration of
the P. vitreus transparent regions is due to the properties of the wing mem-
brane, and local scale nanostructures. We show that scale retention in the
transparent patches might be explained by these perpendicular scales
having hydrophobic properties.
1. Introduction
Animal transparency, i.e. the physical state of letting light propagate through
the body, is, arguably, the ultimate mechanism of camouflage [1]. Nearly trans-
parent bodies are widespread in pelagic organisms such as jellyfish, sea angels,
squids and fish [2,3]. Animal transparency is rare on land, yet we can cite a few
instances in insects: the wings of most insects as well as those of glasswing but-
terflies [4], the prothorax and elytra margins of tortoise beetles [5] and the
pupal case in many butterfly species just before eclosion [6]. In addition,
cases of translucency have been described in amphibians, such as the glass
frogs, the Barton Springs salamander and some tadpoles [7]. Translucency,
which results in only partial transparency as a result of scattering from hetero-
geneous materials and interfaces [8], acts as modifiable camouflage by
decreasing edge diffusion [9].

The wings of butterflies and moths (Lepidoptera) are a good model to study
the development, the ecological function(s) and the evolution of transparency
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from a non-transparent ancestral state. Wing transparency
evolved several times independently during the diversification
of Lepidoptera from ancestors with opaque wings [4]. Lepi-
dopteran wings are typically covered with chitinous scales
that bear colour produced by pigments [10,11], photonic
nanostructures [12] or a combination of both [13–15]. Beyond
their role in coloration, wing scales also play a role in thermo-
regulation [16,17] and water repellence [18]. As such, making
wings transparent involves changing the development of
scales, and potentially also their biological role.

Wing transparency can be achieved by a greater exposure
of the wing membrane in different ways. Lepidoptera can
simply lose scales [19–22], replace the typical flat, paddle-
shaped scales by thin, hair-like piliform scales [18,23,24] or
reduce pigmentation in the exposed membrane [4]. The repla-
cement of archetypal, flattened scales with piliform ones has
been thoroughly investigated in the glasswing butterfly Greta
oto, which also uses surface waxes in the exposed membrane
to reduce glare [25]. However, little is known about other
potential ways of achieving transparency.

In the present study, we explore the structural basis and
the function of the wing transparency in the musical ghost-
skipper, Phanus vitreus, a clearwing butterfly in the family
Hesperiidae, primarily found in lowland rainforests from
Mexico to southern Brazil [26]. This species is remarkable
for having evolved transparent wing patches while retaining
scales in these patches [4], and exhibiting a unique visual
effect due to the blue/cyan coloration of the transparent
zones. The retention of scales suggests that they may have
an important functional role. We applied optical and scan-
ning electron microscopy (SEM), as well as focused ion
beam (FIB) milling to characterize the structure of both the
wing membrane and the wing scales in the transparent
area. By combining UV–visible–near-infrared microspectro-
photometry and optical modelling, we found that the
transparent wing regions reflect blue and cyan light, and
we disentangled the relative contribution of the wing mem-
brane, the scales and the scale nanostructures to the overall
coloration of the wing. Furthermore, contact angle goniome-
try showed that the modified scales of the transparent wing
regions play a role in water repellence.
2. Results
2.1. Characterization of the transparent regions of the

Phanus vitreus wing
The P. vitreus wing pigmentation pattern consists of a black
background covered with pigmented scales, and several trans-
parent ‘windows’ on both the forewing and the hindwing
(figure 1a,b). The windows are not perfectly transparent, but
rather show a light blue-green reflection (figure 1a), and a
slight brownish tint when placed against a white background
(figure 1b). The mean light transmittance is 85% in the visible
regime under normal incidence (electronic supplementary
material, figure S1). The transparent areas contain only one
type of sparse scales, very short in length (approx. 40 µm;
figure 1c), and different from the flanking cover and ground
black scales. These short scales have fused upper and lower
laminae that are reminiscent of the fused scales of primitive
Lepidoptera [27–29]. Contrary to the majority of butterfly
scales, the scales of the transparent areas in P. vitreus do not
lie flat on the wing, but are attached almost perpendicular
to the wing surface (average insertion angle of 80 ± 5°)
(figure 1c,d). When mounted on a black background and
epi-illuminated, the wing membrane of the windows appears
blue (figure 1e). When mounted on a glass slide and trans-illu-
minated, the same wing membrane shows an overall cyan hue
(figure 1f ). These observations prompted us to also investigate
the basis of this blue–cyan coloration, in addition to the
mechanisms of overall transparency.

2.2. Wing membrane of the windows: ultrastructure
To examine the mechanism of wing transparency, we first
characterized the inner structure of the wing membrane by
electron microscopy. SEM cross-sections of a torn wing
showed that the wing membrane can be divided into three
main cuticular layers: a dorsal and ventral exocuticle, and a
mesocuticle as the middle layer (figure 2a). The exocuticle
consists of a nipple array nanostructure (figure 2b), without
wax, overlaying a lamellar organization (figure 2c). The
nipple array has an average height of hn= 142 ± 10 nm and
an average diameter of dn= 135 ± 11 nm (figure 2a). The
nipple array is randomly arranged with an average pitch of
300 nm (figure 2b; electronic supplementary material, figure
S2). SEM images did not show the presence of wax-based
nanopillars on top of the nipple nanostructures described in
the glasswing butterfly [25]. Nevertheless, we tested for any
contribution of epicuticular wax to the wing membrane
reflectance. We manually removed the scales by softly brush-
ing a transparent wing region with a paintbrush (electronic
supplementary material, figure S3), followed by plasma
cleaning to remove surface hydrocarbons (electronic sup-
plementary material, figure S4) [30]. Then, we measured the
reflectance of the treated wing membrane. No significant
difference was detected between the treated and untreated
samples, suggesting that epicuticular wax does not play a
role in the optical properties of the wing membrane in P.
vitreus (electronic supplementary material, figure S5). Under
the nipple array, the alternation of bright and dark layers,
which is also visible in unstained samples (electronic sup-
plementary material, figure S6A), likely results from a
patterned distribution of pigment. The inner mesocuticle is
made of a less dense material deposited perpendicular to
the exocuticle (figure 2a). In the centre of this mesocuticle
lies an electron-dense layer (visible in TEM) (figure 2c),
whose persistence in unstained samples suggests its pigmen-
tary nature (electronic supplementary material, figure S6A).

The pigments present in the wing membrane, and which
explain its pale brownish coloration (figure 1b), are likely
melanins. This was confirmed by immersing wings in
warm 3% H2O2 overnight, which breaks down melanin
[31,32]. After H2O2 treatment, the wing membrane was less
pigmented and exhibited a reduced visible-light absorbance
(electronic supplementary material, figures S6B and S6C).

2.3. Wing membrane of the windows: photonics
In order to investigate how the nipples and the overall mem-
brane structure impacted wing transparency, we used a
modelling approach. Our model consists of a two-dimensional
nipple array-based chitinous exocuticle with dimensions
obtained from our TEM images (figure 2d). The nipple nanos-
tructures were modelled as half ellipsoids with an average
height of hn= 142 ± 10 nm, an average diameter of each
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Figure 1. Multi-scale characterization of the clearwing musical ghost-skipper Phanus vitreus. (a) Adult P. vitreus beside Lake Soledad, Madre de Dios, Peru ( photo:
courtesy of Les Catchick). (b) Right fore- and hindwings mounted on graph paper. The grid is visible through the transparent windows of the P. vitreus wing. The
transparent regions display a light brownish coloration. (c) SEM image of the edge between dark (left) and transparent (right) wing regions. The dark region is
densely covered with flat, long and pigmented scales, whereas the transparent region shows sparse, small and nearly vertically arranged scales. Inset: the blue
square highlights the wing area observed by SEM. (d ) SEM close-up of the scales from the windows. (e) Epi-illumination of a transparent wing region mounted on
carbon tape. ( f ) Transparent wing region mounted on a glass slide and examined with transmitted light.
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nipple determined as dn= 135 ± 11 nm, and an average pitch
(distance between two nipples) of 300 nm. We modelled the
dorsal exocuticle with an average thickness of hde= 436 ±
20 nm, the pigmented mesocuticle with an average thickness
of hm= 194 ± 7 nm and the ventral exocuticle with an average
thickness of hve= 412 ± 10 nm, as per our direct measurements.
Assuming that cuticle is mainly made of chitin, our optical
model uses the refractive index of chitin n = 1.56 for both the
dorsal and ventral exocuticles [33,34]. Estimating the refractive
index of the pigmented mesocuticle required to consider the
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Figure 2. Structure and optical properties of the Phanus vitreus window wing membrane. (a) SEM close-up of a naturally torn transparent region of the wing. Two
main cuticular layers are visible: the exocuticle and the mesocuticle. (b) SEM close-up of the wing membrane surface showing the regular arrangement of nipple
array nanostructures. (c) TEM cross-section of the same sample without staining. (d ) Best-fit optical model. (e) Measured and simulated reflectance. de, dorsal
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effect of absorbing pigments. Light propagation in absorbing
materials can be described using a complex-valued refractive
index. The imaginary part explains the attenuation, while
the real part accounts for refraction. We estimated the
wavelength-dependent imaginary part of the refractive index
from our measured absorption spectrum as previously
described [35]. The imaginary part is quite small (less than
0.012 in the visible range; electronic supplementary material,
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figure S7), which makes the transparent wing possible. The
real part of the refractive index of the pigment layer is 1.74,
similar to previously reported values [36].

We then ran alternative models that differed in the inner
structure of the wing membrane to examine which aspects of
the membrane morphology altered light reflectance (hence
transparency), and to pick the best-fitting model. The ‘one-
layer’ model assumed a homogeneous cuticular content of
the wing membrane, and led to a reflectance spectrum with
multiple peaks that differed from the bimodal spectrum
obtained experimentally (electronic supplementary material,
figure S8A). The ‘three-layer’ model assumed the presence
of melanin in the mesocuticle and considered the wing mem-
brane as being slightly asymmetrical, with dorsal exocuticle
thicker than ventral exocuticle. The simulated reflectance
data using this model provided a better fit to the experimen-
tal reflectance data (figure 2e). A model where the ventral and
dorsal exocuticle had the same thickness produced very simi-
lar results (electronic supplementary material, figure S8B),
showing that the slight asymmetry of the membrane does
not play a crucial role in its reflection. Comparing the pre-
vious ‘three-layer’ model in silico with a model in which the
nipple nanostructures were absent, we obtained very similar
spectral reflectance signatures, such as the position and shape
of the peaks, but the reflectance intensity was significantly
lower in the nipple model (figure 2e). This demonstrates
that the nipple nanostructures decrease the reflectivity of
the wing membrane, making the wing more transparent.
The discrepancy between the simulated reflectance spectrum
of the model with nipples and the measured reflectance spec-
trum could be ascribed to the non-uniformity of the cuticular
thickness and nipple shape in the real wing membrane.
Moreover, we plotted the simulated transmittance spectrum
of the model with nipples (electronic supplementary
material, figure S9). The transmittance value in the visible
range is larger than 80%, which is consistent with the trans-
parent appearance of the wing. We also simulated the
electric field distributions for the ‘three-layer’ model with
nipples (electronic supplementary material, figure S10). The
electric field magnitudes above the light source at the
peak/dip wavelengths of 440 nm, 543 nm and 607 nm are
0.34, 0.22 and 0.36, respectively.

2.4. Modified scales of the windows produce structural
colour

We next looked at how the retention of scales on the wing
membrane impacted wing membrane reflectance. We
measured the spectral reflectance of both the intact transpar-
ent wing area and the same region after the removal of the
scales. Reflectances were similar, but the intensity of the
second peak (approx. 600 nm) was slightly reduced when
the scales were removed (electronic supplementary material,
figure S11). Thus, scales contribute to the overall reflectivity
of the wing in P. vitreus, but their contribution at normal
incidence is limited given their nearly upright orientation.

To investigate the contribution of the different hierarchical
nanostructures of the scale to overall wing reflectivity, we
examined the scales with SEM, FIB–SEM and optical imaging.
The abwing (upperside) surface of the scale consists of a grid
of longitudinal chitinous ridges (figure 3a), whereas the
adwing (underside) surface is largely featureless (figure 3b).
Under epi-illumination, the abwing surface displays a
predominant cyan hue with local yellow and orange tints
(figure 3c). At higher magnification, the ridges show blue
dots regularly spaced along their length (figure 3c0). The
adwing surface appears bluer, with a Pointillist multi-coloured
effect being visible at higher magnification (figure 3d0; elec-
tronic supplementary material, figure S12). Taken together,
our observations suggest that the predominant cyan hue of
the scale comes from the interridge region of the scale, and
the deeper blue coloration comes from the ridge.

To test these hypotheses further, we measured the reflectance
of each region of the scale with a microspectrophotometer.
Whereas the reflectance spectrum of the interridge region
shows a single peak around 520 nm, the reflectance spectrum
of the ridge region comprises two peaks: centred around 410
and 520 nm (figure 3e). Because the minimum sample area of
the microspectrophotometer (1 µm×1 µm) exceeds the width
of the ridge (approx. 250 nm) and given the high numerical
aperture of the objective (0.9), it is likely that the ridge measure-
ment collected the light reflected from both the ridge and the
surrounding interridge regions.

To further ascertain the effect of the ridge and interridge
regions on scale colour production, we selectively removed a
part of the ridge by FIB–SEM on an uncoated scale, then
remeasured the reflectance of the milled ridge area. The first
peak (approx. 410 nm) disappeared, whereas the second
peak (approx. 520 nm) remained (figure 3e), suggesting that
the ridge and the interridge region, respectively, give rise to
the first and second peaks.

To further validate the structural basis of the scale color-
ation, we ran optical simulations. First, we built a simple
optical model of the interridge region that consists of
microribs (average thickness hmr = 45 ± 2 nm, average width
wmr = 62 ± 4 nm, average distance between two microribs
d = 58 ± 3 nm) on top of a lower lamina (average thickness
hLL = 225 ± 12 nm) (figure 3g). The resulting simulated reflec-
tance shows a single peak around 520 nm, whose width is
bigger (i.e. colour less saturated) than the one obtained
for experimental measurements. We also investigated the
impact of the distance between microribs on the reflectance
by varying the microrib spacing in our model. We found
that the reflection spectrum was blue-shifted towards shorter
wavelengths when the distance between microribs was
increased (electronic supplementary material, figure S13).

We then built an optical model of the ridge itself. The
ridge consists of partly overlapping lamellae whose tip
stands over an air layer (figure 3f ). Under epi-illumination,
the lamella tips exhibit a blue coloration, leading to the
dotted appearance of the ridge (figure 3c0). We found that a
multi-film interference model made of alternating materials
with different refractive indices (nair = 1, nchitin = 1.56), recapi-
tulates the empirical reflectance data. In our model, the top
chitinous layer (the lamella) is separated from the bottom
chitinous layer (the lower lamina of the scale) by a distance
that corresponds to the average thickness of the air layer,
hair. The simulated reflectance shows a peak around 410 nm
(figure 3g) that recapitulates the reflection measured for the
ridge area (figure 3e).

2.5. Modified scales contribute to the hydrophobicity
of the windows

The inclusion of these vertical-oriented scales increases the
overall reflectivity of the wing membrane, making it less
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transparent, so it is unclear why scales are retained at all in
the transparent patches. In order to understand their puta-
tive biological function, we investigated the contribution
of the vertical scales to the overall hydrophobicity of the
transparent wing area. To do so, we placed a droplet of
water on the wing surface and measured the contact angle
of the droplet with the wing surface (figure 4a). The capa-
bility of a substrate to repel water (i.e. hydrophobicity)
increases with increasing contact angles. A substrate is
termed hydrophobic when the contact angle exceeds 90°,
and superhydrophobic for values greater than 150° [37].
We first assessed the hydrophobicity of the wing area
covered with normal black scales and found an average
static contact angle (°) of 145 ± 3.2, which is highly hydro-
phobic (figure 4b) and comparable to values reported in
other species [24]. Then we did the same calculations for
the transparent region and found a significantly smaller
average static contact angle of 114 ± 6.9 (t-test, d.f. = 4,
p-value = 1.8 × 10−5). This value, however, is significantly
more hydrophobic than the value of the membrane after
manually removing the scales: 93 ± 11.1 (t-test, d.f. = 4,
p-value < 6.7 × 10−3) (figure 4b). We conclude that retaining
scales in the transparent area improves overall wing
hydrophobicity.
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3. Discussion
3.1. Evolving sub-optimal wing transparency
Wing transparency has evolved multiple times indepen-
dently across Lepidoptera [4], suggesting the ecological
relevance of this trait. In Lepidoptera, transparency might
play a role in thermoregulation as evidenced by the decreas-
ing transmittance of the transparent wing area as latitude
increases in a large sample of species [4]. Transparency also
serves as camouflage by allowing the resting background col-
ours to emerge through the wings of diurnal butterflies
[4,38,39] and nocturnal resting moths [40]. Furthermore,
transparency has been shown to act as an aposematic signal
among co-mimetic species [41].

Although the ecological relevance of wing transparency
remains unknown in P. vitreus butterflies, the multiple mech-
anisms deployed to optimize this trait suggest important
selective pressures on the evolution of transparency in this
species and perhaps other lepidopterans. The nearly vertical
orientation of the fairly short scales maximizes the exposure
of the wing membrane to light. However, the wing mem-
brane can still reflect light due to the stark difference in
refractive index between air (n = 1) and chitin (n = 1.56) [42].
Light reflectance is reduced, however, via the nipple array
on the surface of the wing membrane, which increases light
transmission through the tissue. This strategy, as well as the
deployment of wax nanopillars and conical protuberances
to reduce light reflectance, have previously been observed
in the wings of other species of butterflies [25,41,43–45], in
the wings of moths [20,46], in the wings of cicadas [47,48]
and in the eyes of moths [49,50] and other insects [51–53].
These natural strategies have also inspired the development
of anti-reflective coatings [54–57].

Our findings, however, show that the windows on the
P. vitreus wing deviate from perfect transparency. The light
is not entirely transmitted through the wing, but partly
absorbed by the pigment in the wing membrane and partly
reflected by the encountered scale nanostructures. Interest-
ingly, published studies of the glasswing butterfly G. oto do
not mention the presence of pigment in the wing membrane,
nor optical models that necessitate a pigmented wing mem-
brane to fit the measured reflectance [25,43]. Future studies
might help to determine whether the pigmentation of the
P. vitreus wing membrane is a secondarily acquired trait, or
alternatively, an ancestral feature in Lepidoptera that has
been lost in other transparent species like G. oto. Another
difference between these two species is that P. vitreus, in con-
trast to G. oto, shows no wax-based nanopillars on top of the
nipple nanostructures. It has been shown that these wax-
based nanopillars, mainly composed of long-chain n-alkanes,
reinforce the anti-reflective properties of the nipples in G. oto
[25] and in other butterflies [41]. Despite this difference in
nanopillar composition, the transparent wings have a similar
transmittance under normal incidence in P. vitreus (85%) and
in G. oto (84%) [43].
3.2. Retaining scales in the transparent wing windows
The strategy ‘zero scales’ has evolved several times indepen-
dently during the evolution of clearwing moths and
butterflies [4]. This strategy, which seems rather ultimate
and optimal, is however not the rule among clearwing lepi-
dopterans with the majority of species retaining scales in
the transparent wing regions [4]. A proximal explanation
for such diversity is that different molecular mechanisms
are responsible for the modification of the scales among
clearwing lepidopterans. Whereas altered neural precursor
formation would presumably lead to the absence of scales
[58], as is the case for absence and variation in the location
of homologous sensory bristles across insects [59–63], the
perturbation of more downstream developmental genes
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would affect the morphology and orientation of the scales
[15,64]. An ultimate, adaptive hypothesis would be that
retaining scales in transparent wing regions aids in generat-
ing structural colours [12], self-cleaning [65], aerodynamics
[66] and thermoregulation [67]. Here, we demonstrate that
the upright scales of the transparent regions in P. vitreus
confer increased hydrophobicity to the wing, a function
that might be generalized to most clearwing butterflies and
moths [68].

3.3. Wing membrane and scales are coloured via
thin-film interference

The transparent windows of P. vitreus have a lightly irides-
cent, blue–cyan coloration because the blue–cyan light is
mainly reflected by the encountered nanostructures. We
have shown that multi-layered thin-film interference explains
the coloration both of the wing membrane and of the scale.
Our findings show that the wing scales are able to produce
structural colours when they stand horizontally under
normal light incidence. Even if the nearly vertical and natural
position of the scales partly annihilates this coloration, the
scales still contribute to the overall coloration of the transpar-
ent windows in P. vitreus. Furthermore, it is noteworthy that
P. vitreus belongs to the subfamily Pyrginae, whose represen-
tatives are known for basking with their wings held wide
open, compared to the half-open wing basking position
favoured by other hesperids, suggesting the putative
ecological relevance of wing coloration in this species.

Alternatively, these blue hues might be used not for cryp-
sis but for other biological functions. In the pipevine
swallowtail butterfly, iridescent blue wing coloration is recog-
nized as a warning signal by avian predators [69]. In Morpho
butterflies, blue species have usually a fast and/or erratic
flight that makes them difficult to locate and catch for
birds. Blue in Morpho may serve as an escape aposematism
by informing predators about the cost of an attack rather
than toxicity [70,71]. Blue colours could also be used in
mate recognition and choice in Heliconius butterflies [72].
Future ecological studies are required to understand the
function of the blue–cyan colour in P. vitreus.
4. Material and methods
4.1. Biological samples
Dried specimens of Phanus vitreus were obtained from Lepidop-
tera Exchange (https://lepidopexchange.com/). The individuals
were collected in San Vicente, Argentina in November 2007.

4.2. Optical imaging
Epi-illumination microscope images were obtained with either
a 20× or 100× objective of a uSight-2000-Ni microspectrophot-
ometer (Technospex Pte. Ltd, Singapore) and a Touptek
U3CMOS-05 camera.

4.3. Scanning electron microscopy
Samples were mounted on carbon tape, and sputter-coated
(JEOL JFC-1600) with platinum for 100 s at 40 mA. Samples
were imaged using a FEI Versa 3D with the following par-
ameters: voltage 10 kV, current 23 pA. Cross sections of wing
scales were obtained by FIB milling using the gallium ion
beam of the FEI Versa 3D with the following parameters: beam
voltage 8 kV, beam current 12 pA, tilt 52°. Milled samples were
imaged as previously described. Thickness and other geometries
were measured using the Line tool implemented in Fiji [73].

4.4. Transmission electron microscopy
Adult wings were fixed in 2.5% glutaraldehyde in phosphate-
buffered saline (PBS, pH = 7.4) for 4 h at 4°C. Wings were
washed in PBS and post-fixed in 1% osmium tetroxide for
30 min. Samples were then dehydrated in ethanol and embedded
in epoxy resin. Samples were sectioned on a Leica UCT ultrami-
crotome, stained with lead citrate and imaged with a JEOL JEM-
1220 TEM at 100 kV. Thickness and other geometries were
measured using the Line tool implemented in Fiji [73]. Ten
independent measurements were taken and averaged.

4.5. Microspectrophotometry
Samples were mounted on carbon tape. Reflectance spectra with
a usable range of 350–950 nm were acquired with a microspectro-
photometry set-up using a mercury–xenon light source
(Thorlabs, New Jersey, USA) connected to a uSight-2000-Ni
microspectrophotometer (Technospex Pte. Ltd, Singapore),
using a polished aluminium mirror as a light reference. The
microscope’s Nikon TU Plan Fluor objectives have the following
specifications: 4× (NA = 0.13), 20× (NA = 0.5), 100× (NA = 0.9).
Each measurement was averaged 10 times over an integration
time of 100 ms. Reflectance spectra from three measurements
taken at different locations on the same sample were averaged
to account for any variability.

Transmittance spectra were measured using the same set-up,
except that the samples were mounted on a glass slide. For refer-
ence, we used the light transmitted through the glass side. To
obtain absorption spectra, the samples were mounted on a
glass slide and covered with a coverslip, and immersed in
clove oil as a refractive index matching medium for chitin. A
transparent area of the glass substrate covered with clove oil
was used as the reference. Transmittance and absorption spectra
were obtained by averaging three measurements taken at
different locations on the same sample.

4.6. Optical simulation
The electromagnetic simulations were conducted with a finite-
difference time-domain software (Lumerical Solution Inc.).
Chitin was modelled as a lossless material with a refractive
index of 1.56. For the reflection spectra, a broadband plane
wave was normally incident to the simulated membranes and
scales. We used a periodic boundary condition in the x/y-direc-
tion and a perfectly matched layer-absorbing boundary
condition in the z-direction to absorb light outside the structure
regions. Energy monitors were placed behind the light source
to record the calculated power flux and obtain the simulated
reflection spectra. The electric field profiles in the plane of inci-
dence at the peak/dip wavelengths were recorded by a field
profile monitor.

4.7. Plasma cleaning
To remove surface hydrocarbons, we cut the wing into small
pieces, manually removed the scales from the transparent
region, and placed them in a plasma cleaner. Ultraviolet light
generated in the plasma breaks most organic bonds of hydrocar-
bons [30]. Moreover, the radical oxygen species generated react
with the broken-down organic contaminants to form mainly
water and carbon dioxide that are continuously removed from
the chamber. The samples were oxygen-plasma treated using a
power of 60 W for durations of 20 and 120 s and a frequency
of 13.56 MHz (PICO System, Diener Electronic, Ebhausen,

https://lepidopexchange.com/
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Germany). The oxygen flow rate was set at 15 standard cubic
centimetres per minute (sccm). Reflectance was measured
subsequently on three independent samples.

4.8. Contact angle measurement
In order to measure wing hydrophobicity, we calculated the
static contact angle of small droplets of water placed on the
surface of the wing. We performed five measurements on
non-overlapping transparent regions of the dorsal forewings,
on the same transparent region after we manually removed
the scales, and on black wing regions. Measures were acquired
with an OCA40 Micro system (DataPhysics Instruments
GmbH, Filderstadt, Germany) at 25°C with a defined drop
volume of 1 µl of ultra-pure water. A video was recorded
after the drop was dispensed, and then we used SCA20
software (DataPhysics Instruments GmbH, Filderstadt,
Germany) to calculate the static contact angle. Statistical analysis
and boxplots were performed using R statistics package version
3.5.0 (the R Project for Statistical Computing, https://www.r-
project.org).

Data accessibility. The raw data are available on Zenodo (https://doi.
org/10.5281/zenodo.7824043) [74].

The data are provided in electronic supplementary material [75].
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